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ABSTRACT
We explore the problem space of maximum nonlinearity
problems for balanced Boolean functions, examining the sym-
metry structure and fitness landscapes in the most common
(bit string) representation. We present theoretical analyses
of well understood aspects, together with detailed enumer-
ation of the 4-bit problem, sampling of the 6-bit problem
based on known optima, and sampling of the 8-bit problem
based on its fittest known solutions.

We show that these problems have many more symme-
tries than is generally noted, with implications for crossover
and for distributional methods. We explore the large-scale
plateau structure of the problem, with similar implications
for local search. We show that symmetries yield additional
information that may yield more effective search methods.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Artificial Intelligence—
Problem Solving, Control Methods, and Search

Keywords
Evolutionary Computation; Cryptographic Boolean Func-
tion; Fitness Landscape; Symmetry

1. INTRODUCTION
Boolean functions possessing good cryptographic proper-

ties are a key resource for information security – the diffi-
culty is to find them. While finding a function that satisfies
only a single property is not so difficult, finding a function
that satisfies several properties can pose a challenging task
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requiring search. To date, the success of search methods in
cryptography has been more limited than we might wish.

We consider the problem of maximizing nonlinearity of
balanced Boolean functions (BN). It has known optimal
solutions for 4- and 6-argument problems; the 8-argument
problem has a proven upper bound for nonlinearity of 118 [2].
It is believed to be achievable, but the best found so far is
116 [13]. BN is among the simplest of the Boolean crypto-
graphic problems, most others being refinements imposing
further restrictions on the acceptable functions; thus, im-
proved methods should extend to a wide range of problems.

We analyze two difficulties of the most common (bit string)
representation. We present a fairly classical fitness land-
scape analysis, supplementing it with an analysis of the
symmetries of the space, revealing additional structure and
showing how it may be useful for search. Better understand-
ing should lead either to better representations, or to better
evolutionary operators within the bit string representation.
We partially analyze the difficulties theoretically, and ex-
tend this by empirical analysis. The 4-argument problem
is small enough to be exhaustively enumerated, but is very
different from higher-order problems, yielding limited illu-
mination (almost all functions are optimal, with very small
regions of sub-optimal solutions, whereas by the time one
comes to 8-argument functions optima are vanishingly rare).
Thus we also stochastically sample regions of the 6-argument
problem based on known optima, and sample regions of the
8-argument problem based on known high-fitness regions.

We emphasize that we are not studying the bit string rep-
resentation as the “right” representation for search – our
analysis shows that it has substantial problems for search.
However it is the representation in which the problem is
naturally defined – and is therefore simple to analyze. Any
other representation should cover this space to guarantee
that it does not exclude optima, so analyses in this repre-
sentation can help to illuminate others as well. This deeper
analysis will support a more structured search for better rep-
resentations and operators that may allow us to extend to
substantially larger functions. Many of the issues we identify
here, especially of symmetries, are equally present in other
representations – just more deeply hidden.

We next present background on the search problem, on
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symmetry operators in Boolean function spaces, and on sym-
metries and fitness landscapes in evolutionary computation
(Section 2). We then present a theoretical analysis of the
problem (Section 3), emphasizing the symmetry structure,
and extending with some basic observations on the fitness
landscape. A brief description of a complete sampling of
the 4-argument function space follows in Section 4, followed
by a detailed comparison of random samples from the 6-
argument space with “known-good” samples from shortest
paths to known optima (Section 5). Section 6 repeats this
analysis with 8-argument functions, but (since optima of this
problem are currently not known) use examples of the next
highest fitness level as surrogates. We sum up the knowl-
edge gained from this research, and discuss how it may be
applied, in Section 7.

2. BACKGROUND

2.1 Boolean Cryptographic Functions
We first introduce our notational conventions. The inner

product of two vectors ~x and ~y, denoted as ~x ·~y, is defined as
~x · ~y = ⊕ni=1xiyi. “⊕” represents addition modulo 2 (logical
XOR). The set of all n-tuples over the field F2 is denoted by
Fn2 , where F2 is the Galois field of two elements. A Boolean
function of n arguments is any function f : Fn2 → F2. The
Hamming weight (HW) of a vector ~x ∈ Fn2 , is the number of
non-zero positions in the vector.

A Boolean function f on Fn2 can be uniquely represented
by its truth table, a vector (f(~0), ..., f(~1)) containing the
values of f , over its lexicographically ordered arguments [2].

The Walsh transform Wf is a Boolean analogue of the
Fourier transform, and like it uniquely represents each func-
tion; its components measure the correlation between f(~x)
and the linear functions ~a · ~x [2]. It can be written as

Wf (~a) =
∑
~x∈Fn2

(−1)f(~x)⊕~a·~x. (1)

A balanced Boolean function bal(f) has Hamming weight
2n−1 [2]. The nonlinearity nonlin(f) of a Boolean function
f can be expressed in terms of the Walsh coefficients [2]:

nonlin(f) = 2n−1 − 1

2
max~a∈Fn2 |Wf (~a)|. (2)

Sarkar and Maitra [19] derived a bound for nonlinearity of
Boolean functions; for the special case of balanced functions
with even number of inputs, it has the form

nonlin(f) ≤ 2n−1 − 2
n
2
−1 − 2t+1, (3)

for n = 8 and t = 0 this gives an upper bound of 118. Here,
t represents the correlation immunity value [19].

For further details about Boolean functions and their cryp-
tographic properties, we refer readers to [2].

2.2 Boolean Function Space Operators
In studying Boolean functions for circuit design, Slepian

[21] introduced two operators (argument permutation and
negation) which are symmetries on the space, relating them
to Todd’s earlier study [22] of the symmetry groups of regu-
lar polytopes. Golomb [5] extended them with a third sym-
metry (result complementation), and further studied the re-
sulting symmetry group. Edwards [3] studied these opera-
tors in the context of hardware synthesis, extending them

with a further two operators (argument XOR and result
XOR), also both symmetries and thus of relevance to our
work. All except result XOR preserve the properties defin-
ing the BN problem, and thus are symmetries, not merely
of the space, but of the problem.

2.3 Symmetries in Stochastic Search
Symmetric fitness landscapes have long been seen as diffi-

cult for evolutionary algorithms (EAs), because of the con-
fusion they induce. There are two main effects:

1. The assumption underlying crossover is that the re-
gions between fit instances are more likely to contain
fitter instances. Symmetries imply multiple regions
of equivalent fitness, undermining this justification.
For the vast number of symmetries in Boolean crypto-
graphic function spaces, stochastic symmetry breaking
is unlikely to ameliorate this.

2. Naudts, van HoyWeghen and colleagues have noted [14,
24] that for value symmetries, in specific types of prob-
lem spaces (decomposable over neighborhoods), differ-
ent regions can converge to incompatible neighborhood
optima, leading to deep local optima in the global fit-
ness landscape.

More recently, Santana et al. [18] showed that suitably struc-
tured algorithms can take advantage of other kinds of sym-
metries (variable symmetries) to reduce problem difficulty.
The five classes of symmetries mentioned earlier generate
a huge number of symmetries in the balanced nonlinearity
fitness landscape; since all but one generator are variable
symmetries, so there is some hope for progress. Even the
lone value symmetry may not pose as severe a problem as
it does in Ising problems, because the fitness function for
balanced nonlinearity is not obviously decomposable, so the
symmetries may not generate deep local optima.

More generally, symmetry breaking has been studied in
some detail in local search methods; Prestwich and Roli [17]
presents a useful way into this literature.

2.4 Fitness Landscape Analysis
Fitness landscape analysis has been a useful tool to inves-

tigate different facets of problem difficulty for EAs. We use
concepts from fitness landscape analysis to study the defin-
ing characteristics of fitness landscapes in the BN problem
and the role of symmetries. We briefly review some relevant
results.

For a given fitness function f : E → R, a landscape Λ
for f can be defined [11] as a triple Λ = (E, f, d) where
d : E×E →R∪{∞} for which is required that: i) d(s, t) ≥
0, ii) d(s, t) ⇔ s = t, iii) d(s,u) ≤ d(s, t) + d(t,u). A
neighborhood relation in E can be defined in terms of the
distance d, as t ∈ N(s)⇔ d(s, t) = 1.

Issues addressed by fitness landscape analysis include:

• Identifying criteria describing the landscape complex-
ity (e.g. isolation, multimodality, ruggedness) and mea-
sures to quantify search difficulty for EAs [7, 8, 9, 11].

• Parameterized fitness landscape models [1, 4, 6].

• Topological analysis of neighborhood connectivity of
the landscape [15, 23, 26].
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Several measures to quantify search difficulty have been
proposed [7, 8, 10], aiming to predict the behavior of EAs.
However, our survey of this area did not reveal any similar
metrics for the amount of symmetry or its impact on search.
In the absence of a deeper characterization, we use the total
number of symmetries as a surrogate for the difficulty caused
by symmetry. It reflects the symmetry breaking needed for
crossover to work as a smooth operator rather than a macro-
mutation, and the reduction in search space size to expect
from “factoring out” symmetries.

Parameterized fitness landscape models have been exten-
sively investigated in EAs [1, 6, 16, 25], the NK-landscape
[12] having been used to study the behavior of many EAs.
These studies have usually focused on the role of epistasis in
the complexity of a fitness function. NK-landscapes are gen-
erated by random sampling of the parameters defining local
functions, making the emergence of symmetric relationships
between variables unlikely. We have found no reports of pa-
rameterized fitness landscape models designed to evaluate
the effect of symmetry.

In network characterizations of combinatorial fitness land-
scapes [15, 23, 25], combinatorial landscapes are viewed as
graphs, with each vertex denoting a solution and each edge
the effect of an operator. Some properties of the landscape
can be extracted from statistical analysis of these networks.
A critical question in such analysis is the definition of the
neighborhood. Although we do not explicitly conduct a
network-based analysis of the Boolean function landscape,
we use neighborhoods to analyze the distance between sym-
metric solutions and the distribution of feasible (balanced)
solutions.

We have found few examples of works where the analysis
of the fitness landscapes consider the impact and potential
use of the symmetries in the problem. One such is [20],
where the authors investigate fitness landscapes of dynami-
cal systems aiming at the identification of variable symme-
tries that serve to propose variable aggregation methods for
problem simplification. However, it seems of limited rele-
vance here, as the BN problem is neither dynamic nor de-
composable in anything like the required form.

3. THEORETICAL ANALYSIS

3.1 Problem Definition
The requirement is to search the space of balanced Boolean

functions of N arguments (represented by the vector of out-
put values ordered lexicographically over the inputs) for a
function of maximum nonlinearity. The “balanced” part of
the problem definition is a constraint that can be handled
either as a sudden-death mechanism or a penalty function
(in which case the imbalance is included as part of the fitness
function). We formally define the penalty-function method;
the mathematics of sudden-death is readily derivable from
it. Using the standard notation for the Boolean space as

2 = {0, 1}, the search space is thus the set 22N . We analyze

using the Manhattan distance δ over the space. We define:

nonlin(f) = min
affine f1∈22

N
δ(f, f1) (4)

imbal(f) = abs(|x : f(x) = 1| − |x : f(x) = 0|) (5)

= min
balanced f1∈22

N
2× δ(f, f1)

fit(f) = max
f∈22N

{nonlin(f)− imbal(f)} (6)

Although the upper bound of nonlinearity for balanced
Boolean functions in 8 variables from equation 3 is 118, the
best known value as of January 2015 is 116 [13]. The fi-
nal solution must satisfy the constraint imbal(f) = 0. The

search space size for a penalty approach is 22N (i.e. for
N = 4, 6, 8 respectively 216, 264, 2256); for the sudden-death

approach (i.e. balanced functions only) it is C2N

2N−1 (i.e. ap-

proximately 214, 261, 2252, using the notation Crn for the bi-
nomial coefficient). In the next subsection, we study the
numerous known symmetries on this space; among those we
describe, there are respectively at least (214, 234, 263) and
at most (219,241,272), expected to be nearer the upper end
of the range for larger N .1 There are sufficiently many to
have a very substantial impact on the search space. Without
careful study, the impact is likely to be negative: crossover
may merely randomly jump between symmetry classes, and
thus act effectively as a macromutation; with so many sym-
metry classes, stochastic symmetry breaking is not likely to
be completed within reasonable computational time. But it
may also be positive: from the perspective of two symmet-
ric individuals in a search using mutation and crossover, the
search space looks identical. Hence if we could find a way to
search symmetry classes of functions rather than functions
themselves, the search complexity may be very substantially
reduced. By a symmetry class, we mean a partition of the
function space under the equivalence relation induced by the
symmetries.

3.2 Symmetries in the Problem Space

3.2.1 Definitions
We define the following second-order functions on the in-

teger space 22N (for any permutation π : N → N , f ∈ 22N ,
i ∈ N , and all ~x ∈ 2N ):

σπ : 22N → 22N : σπ(f)(~x) = f(π(~x)) (7)

σ¬xi : 22N → 22N : σ¬xi(f)(~x) = f(~x¬i) (8)

σ¬y : 22N → 22N : σ¬y(f)(~x) = ¬f(~x) (9)

σxi⊕=xj : 22N → 22N : σxi⊕=xj (f)(~x) = f(~xi⊕=j)(10)

σy⊕=xi : 22N → 22N : σy⊕=xi(f)(~x) = f(~x) ⊕ xi(11)

where ~xi⊕=j denotes ~x with xi replaced by xi ⊕ xj and ~x¬i
denotes ~x with xi negated.

1The total number of symmetries on any set of size S is 2S ;
we are restricting the symmetries by invariance requirements
(balance, distance), reducing the total – but not necessarily
to less than S. However, the maximum symmetry class size
under the combination of all permitted symmetries is, of
course, bounded above by S.

459



3.2.2 Symmetry Properties

Proposition 3.1. All σπ, σ¬xi , σ¬y, σxi⊕=xj and σy⊕=xi

are bijections.

Proof. σ¬xi , σ¬y, σxi⊕=xj and σy⊕=xi are idempotent,

while σ−1
π (f)(~x) = f(π−1(~x)).

They thus generate a subgroup of the full symmetry group

S
22

N on 22N symbols. However, as we shall see later, σy⊕=xi

does not preserve balance, so we are most interested in the
subgroup BN generated by σπ, σ¬xi , σ¬y and σxi⊕=xj . Ele-
ments in the subgroup generated by σπ, σ¬xi and σ¬y can be
uniquely represented in the form σπ◦σ¬xi1 ◦. . .◦◦σ¬xi1 ◦σ¬y,

and hence |BN | is at least 2N+1×N !. Strictly, the σπ are su-
perfluous among the generators, since they are generated by
two-cycles σxi↔xj and σxi↔xj = σxi⊕=xj ◦σxj⊕=xi ◦σxi⊕=xj

because of idempotency of ⊕; we include them to clarify the
relationship with earlier work.

Proposition 3.2. F (N,N) ≤ |BN | ≤ 2N+1F (N,N), where
F (N,N) is the number of nonsingular square Boolean ma-
trices of size N ×N .

Proof. Since the σxi⊕=xj symmetries subsume the σπ,
we only need to consider three cases:

1. There are two σ¬y symmetries

2. There are 2N σ¬xi symmetries

3. Each σxi⊕=xj corresponds to a nonsingular N × N
Boolean matrix. The number of square Boolean matri-
ces of size N and rank k is normally denoted F (N, k)
(of course we are interested in F (N,N)).

If the three groups of symmetries were completely orthogonal,
the total number would be 2N+1F (N,N). However, there is
some overlap because of Boolean identities, specifically those
of the form ¬(x1⊕ . . .⊕xm) = ¬(x1)⊕ . . .⊕¬(xm). Since ¬
and ⊕ are both balanced operators, these are the only relevant
identities; we need to factor these from the total, which we
have not yet achieved. Nevertheless, there must be at least
as many symmetries in total as there are σxi⊕=xj symme-
tries, and since the Boolean identities are relatively sparse,
we expect the order of the total to be much closer to the upper
bound than the lower.

There is no known formula for F (N,N), but directly com-
puted values are available for N ≤ 8 [28], and estimates
based on stochastic sampling for 2N ≤ 2.5× 106 [27].

Proposition 3.3. σπ, σ¬xi , σ¬y and σxi⊕=xj preserve
Manhattan distance, in the sense that

δ(σπ(f1), σπ(f2)) = δ(f1, f2)

δ(σ¬xi(f1), σ¬xi(f2)) = δ(f1, f2)

δ(σ¬y(f1), σ¬y(f2)) = δ(f1, f2)

δ(σxi⊕=xj (f1), σxi⊕=xj (f2)) = δ(f1, f2)

δ(σy⊕=xi(f1), σy⊕=xi(f2)) = δ(f1, f2) (12)

and hence so does every σ ∈ BN

Proof. The three symmetries that affect only the func-
tion arguments (i.e. σπ, σ¬xi , σxi⊕=xj ) merely re-order the
output vector; since they re-order f1 and f2 the same way,

they do not change the Manhattan distance. σ¬y negates the
output vectors of both, again leaving the Manhattan distance
unchanged. σy⊕=xi preserves differences and equalities be-
tween output vector locations of f1 and f2 (i.e. it either
changes both, or leaves both unchanged), again preserving
Manhattan distance.

Proposition 3.4. σπ, σ¬xi , σ¬y, σxi⊕=xj and σy⊕=xi

(and hence all σ ∈ BN ) preserve linearity, in the sense that

if f ∈ 22N is linear, then so is σ(f).

Proof. Trivial except for σ¬xi and σxi⊕=xj ; because we
already have access to σπ, we can assume wlog (by argument
re-ordering) that we are applying σ¬x1 to the function a0 ⊕
(a1 ∧ x1) ⊕ . . . ⊕ (aN ∧ xN ). But

σ¬x1(a0 ⊕ (a1 ∧ x1) ⊕ . . . ⊕ (aN ∧ xN ))

= a0 ⊕ (a1 ∧ ¬x1) ⊕ . . . ⊕ (aN ∧ xN )

= a0 ⊕ (a1 ∧ (1 ⊕ x1)) ⊕ . . . ⊕ (aN ∧ xN )

= a0 ⊕ ((a1 ∧ 1) ⊕ (a1 ∧ x1)) ⊕ . . . ⊕ (aN ∧ xN )

= (a0 ⊕ (a1 ∧ 1)) ⊕ (a1 ∧ x1)) ⊕ . . . ⊕ (aN ∧ xN )

= (a0 ⊕ (a1 ∧ 1)) ⊕ (a1 ∧ x1)) ⊕ . . . ⊕ (aN ∧ xN )

which is of linear form. For σxi⊕=xj , we can assume that
we are applying σx1⊕=x2 to the function a0 ⊕ (a1 ∧ x1) ⊕
. . . ⊕ (aN ∧ xN ). But

σx1⊕=x2(a0 ⊕ (a1 ∧ x1) ⊕ . . . ⊕ (aN ∧ xN ))

= a0 ⊕ (a1 ∧ (x1 ⊕ x2)) ⊕ . . . ⊕ (aN ∧ xN )

= a0 ⊕ ((a1 ∧ x1) ⊕ (a1 ∧ x2)) ⊕ (a2 ∧ x2) ⊕ . . .
= a0 ⊕ (a1 ∧ x1) ⊕ ((a1 ∧ x2) ⊕ (a2 ∧ x2)) ⊕ . . .
= (a0 ⊕ ¬a1) ⊕ (a1 ∧ x1) ⊕ (0 ∧ x2) ⊕ . . . ⊕ (aN ∧ xN )

if a1 = a2

= a0 ⊕ (a1 ∧ x1) ⊕ (1 ∧ x2) ⊕ . . . ⊕ (aN ∧ xN )

if a1 6= a2

which in either case is of linear form.

Proposition 3.5. σπ, σ¬xi , σ¬y and σxi⊕=xj (and hence

all σ ∈ BN ) preserve balance, in the sense that if f ∈ 22N

is balanced, then so is σ(f). However σy⊕=xi does not (in
general) preserve balance.

Proof. All except σ¬y and σy⊕=xi simply permute the
output vector, hence do not change balance. σ¬y inverts the

output vector, preserving balance. However σy⊕=xi(fi) = ~0;

fi is balanced, but ~0 is not.

Thus σy⊕=xi are of limited interest for problems requiring
balanced functions, or in general for problems where balance
is included in the fitness function. However, the σy⊕=xi

transformations may be important in analysis of problems
not requiring balance.

Corollary 3.6. All σ ∈ BN preserve the fitness func-

tion, in the sense that for f ∈ 22N , fit(σ(f)) = fit(f).

Note that the symmetric regions are not, in general, dis-
joint. Specifically, the functions ~0 and ~1 are fixpoints for
all the base symmetries except σ¬y (which, of course, has

no fixpoints since by definition it inverts every f ∈ 22N ).
All the σπ, σ¬xi and σxi⊕=xj have other fixpoints, but they
differ for each symmetry.
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3.2.3 Determining Symmetry
Golomb [5] provided a method to determine whether two

Boolean functions were symmetric under his three symmetry
classes (σπ, σ¬xi , σ¬y) by finding a canonical version of each
(they are in the same symmetry classes only if they have the
same canonical version). Its incremental process of deter-
mining the order of variables renders it reasonably efficient.
It may be relatively straightforwardly extended to σxi⊕=xj

symmetries, but unfortunately at the cost of efficiency: al-
though it may be possible to find speedups, a direct imple-
mentation requires generating and testing all possible sym-
metric mappings, clearly at the limits of feasibility for 6-bit
functions, and far beyond for 8-bit. Practically, we cannot
fully test for symmetry in the absence of an algorithm break-
through. But the isomorphism between neighborhoods gives
a quite effective asymmetry test: since the neighborhoods of
symmetric points are necessarily isomorphic, we can sim-
ply test the neighborhoods for isomorphism; any failure of
isomorphism guarantees that the points are not symmetric.

3.3 The Fitness Landscape

3.3.1 Neighborhoods
The full 22N search space and its balanced subspace have

isotropic neighborhoods (that is, the search space looks the
same everywhere, except for balance and distance to the lin-
ear functions). It is easiest to think about the neighborhood
structure from a simple function – for example f 1

2
, the func-

tion whose first half is all 1s, and second half all zeros. For
the full search space, the number of functions at distance d

is just C2N

d (i.e. the number of ordered subsets of 2N of size
d); for the balanced subspace, the distance of a balanced
function from f 1

2
is just twice the number of zeros in the

first half. So of course, there are no balanced functions at
any odd distance, and at any even 2d < N , the number of

balanced functions at that distance is (C2N−1

d )
2

(considering
the two halves of the function separately for counting).

3.3.2 Fitness and Distance
Theoretical analysis of the fitness landscape is difficult

(which is why we concentrate on empirical analysis here).
However, we can immediately conclude that one step of dis-
tance can change the balance and nonlinearity by at most
one (hence the maximum gradient is at most 2). For the
balanced search space, balance is fixed at zero, hence the
minimum step (of length 2) can change the nonlinearity by
at most 2, so that the maximum gradient is 1.

4. COMPLETE SAMPLING

Table 1: Symmetry Classes and Fitness Groups
Lexicographically Class Fitness Group
Smallest Member Size Size
0000000011111111 30 0 30
0000000101111111 1 800 2 1 920
0001011001101011 120 2
0000001100111111 840 4 10 920
0000001101011111 7 360 4
0000001101111101 1 942 4
0000011101111001 602 4
0001011001101110 176 4

The 4-argument space is relatively small, so we can com-
pletely sample it. In Table 1, the vast majority of instances
have maximum fitness; the only exceptions are linear func-
tions and their nearest neighbors. This is so different from
the situation with the functions of interest (8 or more argu-
ments) that little useful can be inferred.

The symmetry classes are slightly more informative: they
are very large (and for functions with more arguments will
be even larger). To ignore the effects of these symmetries is
to make the problem unnecessarily hard.

5. SAMPLING WITH KNOWN OPTIMA
Because we are able to reliably find optima for 6-argument

functions, our analysis can be based on them. Table 2 shows
the histogram of fitness. Although optimal fitness is attain-
able even with random search, the difference from the 4-
argument case could not be more stark. The vast bulk of
individuals have fitness between 18 and 22, and the fall-off
in density from fitness 24 to fitness 26 is precipitous, so that
there is an immense plateau effect.

Any reasonable algorithm readily attains a fitness of 22,
so the major interest is how to move from fitness 22 to the
much scarcer 26 fitness. We examined the neighborhood
structure of two different classes of individuals. The first
class consisted of 106 random individuals. The second class
was formed by taking a number of known optima (of fitness
26), and then finding all linear functions at distance 26 from
them. Any balanced path between such a linear function
and the corresponding optimum forms a shortest path for
search; we would like to know whether individuals on such
“good” paths differ from random individuals. So we sampled
all individuals along a random selection of such paths.2 To
reduce bias, we deleted all duplicates from the data set.

From the arguments in Section 3, the neighborhood struc-
ture is a key property. Each balanced individual has 1024
balanced neighbors, which we sampled, counting the number
of neighbors of lower, equal or higher fitness (since the only
possible fitness differences are −2, 0, 2, this completely char-
acterizes the local neighborhood). We are mainly interested
in the fit end of this spectrum, so we present the results
only for fitnesses above 20, and only for structures with a
sample proportion above 1%. Both samples considered the
neighborhoods of 106 individuals.

The most obvious feature of Table 3 is the difference in
neighborhood structures: shortest-path individuals have far
more higher-fitness neighbors.3 This seems likely to be help-
ful in search, breaking the vast monotonous landscape of fit-
ness 20 and 22 individuals: the proportion of fitter neighbors
(which can be estimated from small samples of neighbors)
may be a better guide to search than fitness.

There are other interesting consequences. There are at
least seven different symmetry classes of optima, and some
of the optima are relatively well connected (as many as 44
neighboring optima). Random fitness 24 individuals rarely
have neighboring optima, but those from shortest paths (which
are guaranteed to have at least one optimal neighbor) often
have substantially more. Overall, there is a wide plateau of
fitness-24 individuals, highly connected to each other (but

2Note that these optima, resulting from a specific search
algorithm, may not be a random selection of all optima.
3Around the 1% cutoff, the presence/absence of neighbor-
hood structures in the table may reflect random fluctuations.
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Table 2: Randomly Sampled Fitness counts and Proportions
Args 6 No. of Samples 3.7 × 106

Fitness 0-8 10 12 14 16 18 20 22 24 26
Count 0 13 202 2 855 28 365 198 563 958 591 2 029 228 482 121 62
Ratio 0 <0.001 <0.001 0.001 0.008 0.054 0.259 0.548 0.130 <0.001

Args 8 No. of Samples 2.6 × 106

Fitness 0-78 80 82 84 86 88 90 92 94 96
Count 0 2 14 31 109 428 1 568 5 093 15 200 42 312
Ratio 0 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.002 0.006 0.016

Fitness 98 100 102 104 106 108 110 112 114-118
Count 112 889 262 058 523 355 777 046 656 813 194 808 8 266 8 0
Ratio 0.043 0.101 0.201 0.299 0.253 0.075 0.003 <0.001 0

even more highly connected to a larger plateau of fitness 22
individuals), with rare spikes up to fitness-26 optima. What
is still not clear (and because of the very large neighborhood
structure – close to a million for two steps – computationally
almost impossible to test) is whether the fitness-24 individ-
uals are fully connected to each other (or at least, whether
every plateau is connected to an optimum), or whether there
may be local optima.

6. SAMPLING IN HIGH FITNESS AREAS
Table 2 also shows the histogram of fitness of 8-argument

functions. The trend for 6-argument functions is amplified.
The vast bulk of individuals have fitness between 100 and
106, and again there is a precipitous fall-off in density from
fitness 110 on, with random sampling virtually never attain-
ing a fitness beyond 112.

We conducted a similar comparison between random and
high-fitness-path individuals as for the 6-argument functions,
again using a sample size of 106; the high-fitness-paths were
generated from individuals of fitness 116. We cannot show
tabular detail due to space restrictions, but there was an
amplification of the phenomenon observed with 6-argument
functions, that functions on a path to a high-fitness region
have many more neighbors of higher fitness than random
functions of the same fitness. Relative to the 6-argument
case, there has been a very rapid increase in the number
of different neighborhood structures (a proxy for number
of symmetry classes). In our 6-argument samples, we saw
a total of under 1 000 different neighborhoods. In the 8-
argument samples, we saw over 47 000 in the random sample,
and 13 600 in the path-based sample.

7. CONCLUSIONS

7.1 Summary
Landscape theory and the experimental results show that

an important reason for difficulty in this problem is the im-
mense size of the apparently featureless plateaus. Symmetry
analysis reveals a second difficulty, that the immense number
of symmetries render crossover merely a macromutation un-
til the symmetries have been broken: if we rely on stochastic
breaking, this will not happen quickly. There is little evi-
dence of the more usual causes of evolutionary search diffi-
culty. The very large neighborhoods make it computation-
ally infeasible to confirm with certainty, but it appears that
deception and local optima are not prominent features. The
gradient, while weak, is smooth, with no abrupt changes in
fitness. In short, were it not for the very large plateau size

and the ineffectiveness of crossover, this would appear an
easy problem.

7.2 Symmetries and their Implications for
Search

From a fitness landscape perspective, there is little further
to be done: the problem is simply one of scale. However our
symmetry analysis may yield better approaches. We see at
least five options:

1. The symmetry methods of [18] dramatically improved
the search performance even for relatively low numbers
of symmetries. However in the form used there, they
required space proportional to the number of symme-
tries, so may be infeasible for this problem.

2. Knowing the symmetries, may help to design represen-
tations collapsing them. This ideal solution requires a
flash of insight that has not yet arrived.

3. In principle, we could search the very much smaller
(and less plateaued) space of canonical representatives
of each symmetry class, but to be feasible this would
require faster methods for finding the canonical repre-
sentatives than we have at present.

4. While the plateaus are very large, they are not fea-
tureless. The proportion of improving neighbors can
distinguish different classes, and shows strong indica-
tions as a useful feature for search. It is not difficult to
envisage algorithms based on this, using sub-samples
of the neighborhood to give a search direction even
in regions of limited fitness change. It may even be
better to move to neighbors with the same fitness but
more neighbors of high fitness than to move directly
to neighbors of higher fitness.

5. Knowing the symmetries can permit us to bias stochas-
tic symmetry breaking to encourage it to happen faster.
We could use a kind of anti-fitness-sharing (rewarding
individuals for being more similar – but not too simi-
lar). In such an algorithm, we might also incorporate
estimates of the number of improving neighbors as a
component of the fitness function.
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Table 3: Random and Shortest Path Neighborhood Structures (6-Argument Functions), Sample Sizes 106

Random Sample Sample from Shortest Path
Fitness Better Worse Equal Count Proportion Fitness Better Worse Equal Count Proportion
22 68 234 722 5 593 0.010 22 106 234 684 1 103 0.011
22 88 234 702 5 526 0.010 22 108 234 682 1 037 0.011
22 164 121 739 7 350 0.013 22 109 234 681 1 390 0.014
22 165 121 738 6 335 0.012 22 169 233 622 1 089 0.011
22 166 121 737 7 203 0.013 22 204 121 699 1 784 0.019
22 167 121 736 10 221 0.019 22 205 121 698 2 666 0.028
22 168 121 735 11 126 0.020 22 206 121 697 2 397 0.025
22 169 121 734 8 290 0.015 22 207 121 696 1 734 0.018
22 203 121 700 5 514 0.010 22 208 121 695 2 463 0.026
22 204 121 699 7 041 0.013 22 250 121 653 2 436 0.025
22 205 121 698 9 947 0.018 22 251 121 652 3 414 0.035
22 206 121 697 11 777 0.021 22 252 121 651 2 635 0.027
22 207 121 696 11 882 0.022 22 253 121 650 1 458 0.015
22 208 121 695 9 700 0.018 22 254 121 649 2 652 0.028
22 209 121 694 8 013 0.015 22 255 121 648 2 328 0.024
22 251 121 652 8 012 0.015 22 256 121 647 3 181 0.033
22 252 121 651 6 217 0.011 22 257 121 646 1 270 0.013
22 254 121 649 6 461 0.012 22 258 121 645 1 031 0.011
22 255 121 648 6 329 0.012 22 303 121 600 2 273 0.024
22 256 121 647 5 918 0.011 22 305 121 598 5 119 0.053

22 306 121 597 3 308 0.034
22 307 121 596 6 016 0.062
22 308 121 595 1 688 0.018
22 309 121 594 1 942 0.020
22 311 121 592 1 288 0.013
22 313 121 590 3 114 0.032
22 314 121 589 1 246 0.013
22 369 121 534 4 623 0.048
22 371 121 532 2 400 0.025
22 441 121 462 1 176 0.012

24 0 662 362 2 257 0.017 24 1 578 445 367 0.023
24 0 661 363 2 416 0.019 24 1 490 533 536 0.034
24 0 660 364 3 175 0.024 24 1 488 535 488 0.031
24 0 659 365 3 202 0.025 24 1 486 537 236 0.015
24 0 658 366 2 588 0.020 24 1 389 634 203 0.013
24 0 657 367 1 796 0.014 24 1 387 636 530 0.034
24 0 653 371 1 380 0.011 24 1 273 750 284 0.018
24 0 586 438 1 897 0.015 24 2 491 531 691 0.044
24 0 585 439 1 604 0.012 24 2 489 533 672 0.043
24 0 584 440 2 837 0.022 24 2 389 633 1 328 0.085
24 0 583 441 2 647 0.020 24 2 387 635 790 0.051
24 0 582 442 1 837 0.014 24 2 273 749 427 0.027
24 0 580 444 1 676 0.013 24 3 387 634 386 0.025
24 0 579 445 1 546 0.012 24 3 273 748 328 0.021
24 0 578 446 2 540 0.020 24 4 273 747 2 425 0.155
24 0 577 447 3 551 0.027 24 4 272 748 667 0.043
24 0 576 448 5 436 0.042 24 5 144 875 416 0.027
24 0 575 449 4 008 0.031 24 6 273 745 270 0.017
24 0 574 450 2 377 0.018 24 12 272 740 825 0.053
24 0 499 525 1 317 0.010 24 16 272 736 1 268 0.081
24 0 494 530 2 037 0.016
24 0 490 534 1 663 0.013
24 0 489 535 2 861 0.022
24 0 488 536 4 503 0.035
24 0 487 537 6 411 0.049
24 0 486 538 4 396 0.034
24 0 387 637 3 962 0.030
24 0 386 638 1 354 0.010
24 0 385 639 1 822 0.014
24 1 387 636 1 688 0.013
26 0 1 022 2 4 0.235 26 0 1 022 2 1 0.063
26 0 1 020 4 5 0.294 26 0 1 012 12 1 0.063
26 0 1 012 12 2 0.118 26 0 1 008 16 1 0.063
26 0 1 008 16 2 0.118 26 0 1 004 20 2 0.125
26 0 1 004 20 2 0.118 26 0 980 44 11 0.688
26 0 996 28 1 0.059
26 0 980 44 1 0.059
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